

Utilizing Lego Mindstorms as a Teaching Platform
for Industrial Automation

Carolyn Oates, Alois Zoitl
Automation and Control Institute (ACIN)

Vienna University of Technology
Vienna, Austria

oatesc@acm.org , zoitl@acin.tuwien.ac.at

Abstract—Industrial control systems are taught best using real
systems. Such systems can be expensive, dangerous, and may
break easily. In the other side simulations often do not react like
the real system. IEC 61499 automation standard supports the
current control system trend toward networks of event-driven
distributed devices. Support for event driven control applications
is new in IEC 61499 as are the tools supporting it. Three tutorials
are presented to teach developing IEC 61499 event driven appli-
cations along with control theory basics using open source tools
with the Lego™ Mindstorms hardware. This inexpensive train-
ing system can be used for teaching industrial control methods
for students, as well as industrial professionals.

Keywords: automation; control systems; robotics

I. INTRODUCTION
Real control systems, such as an industrial robot arm, are

expensive; can be dangerous [3]; and may break easily. In a
simulator timings and physical modeling often do not react like
the real system, teaching the students only the software. Addi-
tionally industrial automation systems are undergoing a major
transition towards distributed control systems adding new de-
velopment paradigms. The problem of industrial automation
education has been summarized by [12] as follows:

“During the last few years the education in engineering and
mainly the control engineering, has suffered multiple changes
due to the fast technological development and the current de-
mands of the field.”1

In order to support industrial automation engineers, the IEC
developed standards to define how distributed control systems
should be developed. The result of this standardization activity
is the IEC 61499 [3], which provides a framework for networks
of event-driven distributed industrial control systems. IEC
61499 applications are built using networks of new kinds of
functions blocks (FBs), supporting event as well as data con-
nections. Support for both event driven and distributed control
applications are newly supported and required for the first time
industrial automation by IEC 61499. The new kinds of FBs
which support distributed control applications need to be
learned. Although the standard is available now for nearly five
years, little tutorial information is available. As new open
source based tools like the 4DIAC–Framework for Distributed
Industrial Control–are becoming available the gateway hurdle
for adopting the new technology is greatly reduced.

1 [12] II p. 3432

However a key open point for learning IEC 61499 based
distributed control systems is the missing availability of cheap
easily available training systems. Lego™ Mindstorms (LMS)
offers with its building kit a flexible way of building small
automation problems. Furthermore with the new system NXT
it provides about the same computing performance as typical
control devices used in the domain of industrial automation.
With this work we like to show how LMS can be used together
with 4DIAC to teach IEC 61499.

LMS has a great history for teaching robotics and control
programming also with block like programming languages.
However none of the available tools provides languages suit-
able for industrial automation engineers.

Lego™ Mindstorms software (a subset of Labview) allows
sequential commands. So when using LMS software to blink
the LED located on the light sensor, there is typically one light
sensor block for on and another for off for the same light sen-
sor. The same sensor may be tested in different phases of an
application using different blocks. Telling the motor to move
occurs via multiple TurnMotor blocks. Labview has data con-
nections, but no event connections [7].

Lejos, Java on LMS, is object oriented so there is only one
instance of a physical sensor, but the method to reads a sensor
can be used multiple times. Behavior programming described
in the Lejos tutorial can still reference the same instance in
multiple behaviors [9]. In comparison FB instances are re-
stricted by the standard to the one physical existence.

This article is structured as follows. In Section 2 we give a
short introduction to IEC 61499. The environment is described
in Section 3, followed by a description on how we developed
the tutorials. The developed tutorials are described in Section 5.
Finally we conclude the article and describe our next planed
steps.

II. SHORT INTRODUCTION TO IEC 61499

The standard IEC 61499 defines several models–the appli-
cation model, the system model, the device model, the resource
model, and the Function Block (FB) model–that allow the con-
trol engineer developing distributed control applications in a
graphical manner. This short introduction to IEC 61499 should
serve as basis for the rest of this thesis. A full description of
IEC 61499's architecture may be found directly in the standard

IEC 61499-1 [6] or in a more comprehensible form in the
books from Lewis [4] and Vyatkin [5].

The base model of IEC 61499 is the FB. A FB is a software
component that is self contained and provides its functionality
through a defined interface. This model has been adopted from
the preceding standard IEC 61131-3 [11] and extended in its
interface with an additional event interface. A trigger on one of
the event inputs starts the execution of a FB. During the execu-
tion of the FB the input data will be processed, output data will
be generated (depending on the functionality of the FB), and/or
output events will be triggered. IEC 61499 defines three differ-
ent FB types (schematically shown in Figure 1d):

Basic FBs (BFB) contain as main element a state machine
that controls the internal execution on an input event arrival.
This state machine is called Execution Control Chart (ECC)
and is based on the Sequential Function Charts of IEC 61131-
3. The ECC consists of three main parts: ECC-states with asso-
ciated ECC-actions and ECC-transitions connecting the states.
ECC-transitions are guarded by conditions. On an input event
arrival the conditions of the current state's outgoing transitions
are evaluated. The first true condition results in a state change.
On state entry the associated actions of the state are executed.
Actions consist of the execution of algorithms and/or triggering
of output events. Algorithms may be programmed in any pro-
gramming language. The main restriction is that algorithms can
only access data inputs, data outputs, and internal variables.

Composite FBs (CFB) serve as container for FBs and may
contain a whole set of FBs and their event connections and data
connections. Incoming event connections and data connections
are passed on to the internal FBs and vice versa for outgoing
connections.

Service Interface FBs (SIFBs) provide a FB interface to
functionality which is beyond the means of IEC 61499. Typical
functionality encapsulated within SIFBS is the access to the

control device's hardware, like the I/O interface or the commu-
nication interface. But also existing libraries that provide func-
tions needed for the control system may be used through
SIFBs. With SIFBs, this functionality can be encapsulated and
the usage can be documented with so called service primitives.
These service primitives allow to model event/data sequences
explaining the usage of the SIFB. IEC 61499 distinguishes two
general types of SIFBs. One is the requester SIFB, the other is
the responder SIFB. The requester SIFB is an application trig-
gered FB which remains passive until an event arrives at one of
its event inputs. The responder type is a resource or hardware
triggered FB. That means that it can send output events result-
ing on actions in the resource or the hardware (e.g.\ interrupts).

Through interconnecting the FBs with event connections
and data connections to Function Block Networks (FBNs) the
control functionality can be modelled in the application model.
Applications are in general modelled without any device or
control infrastructure in mind. The control equipment with
their communication networks used for the data exchange be-
tween the distributed controllers is specified in the system
model. A second part of the system model is the so called
mapping. The mapping regulates which parts of the application
are located on which control device. For example in Figure 1a
Application 1 is mapped to the Devices 2, 3, 4, and 5; whereas
Application 2 is mapped only to Device 2.

IEC 61499 models control equipment that is capable of
executing IEC 61499 applications as devices. A device consists
of a communication interface, a process interface, a device
management, and may contain resources (see Figure 1b). The
communication interface provides communication services for
the device and the application parts residing in this device. The
process interface provides the services for accessing the sen-
sors and actuators needed to control the process (e.g. read the
current motor position).

Figure 1. Overview on the main models of IEC 61499

A resource is a functional unit that serves as containment
for applications or application parts residing in the specific
device and has independent control of its operation. Within a
device resources can be created, deleted, configured, etc. with-
out interfering with other resources and their contained applica-
tions. For applications a resource has to provide an execution
environment (Figure 1c). That means it has to deliver event
notifications to FBs and has to allow FBs to process the incom-
ing events corresponding to their internal structure. A resource
gets access to the communication interface and process inter-
face from the device. SIFBs are the means to provide these
services to the applications.

The management functionality within a device has the main
task to administrate all applications and all resources located in
this device. The management also provides an external inter-
face for engineering tools allowing engineering tools
downloading and uploading applications to (from) the device.
This external interface is provided through the communication
interface. Therefore the management needs an access to the
communication interface (Figure 1b). At device level it pro-
vides the services to create, initialise, start, stop, kill, and delete
the instances of resources and to query the attributes of re-
sources. At resource level the same services allow the handling
of FB instances and their interconnections.

III. ENVIRONMENT
The environment uses only open source applications. The

4DIAC-IDE is used to develop IEC 61499 standard compliant
systems, applications and FB types. The standard provides
portability and plug&play for controller applications. Applica-
tions are uploaded on to the Lego™ “controller” hardware [8]
running the 4DIAC RunTime Environment (FORTE) under
eCos operating system.

Figure 2. shows two IEC 61499 development tools, 4DIAC
and FBDK. The tools generate XML files which comply with
the IEC 61499 standard and can be exchanged.

Figure 2. Development Environment

As shown in Figure 2. , the function blocks and applications

are developed and mapped to device resources via 4DIAC-
IDE. FBs are then exported to FORTE. The 4DIAC FB type
export translates the FB’s IEC 61499 XML representation into
C++ code suitable for FORTE.

Figure 3. Upload to Lego™ Mindstorms NXT

FBDK FBs are reusable, so a simulation using FBDK HMI
FBs to display the output is possible. This is useful for unit
testing FBs inputs and outputs by event. The “device” is a Java
window.

After the FBs are developed the LMS firmware must be
flashed with the eCos+FORTE using SAM-BA [1] (see Figure
3). SAM-BA is provided by Atmel, the maker of the at91sam7s
(ARM7) chip in the LMS [8]. At this point FORTE is running
a simple Ethernet over USB program to upload and run an ap-
plication.

eCos is an reconfigurable embedded operating system, so
only the resources that exist in a device must be included. Con-
trol systems are typically embedded systems. Students who
learn to work with LMS with eCos have a head start using
eCos on other control devices.

IV. COURSE DEVELOPMENT
The tutorials assume no automation background. The tuto-

rials build up concepts stepwise. Beginning FBs and IEC
61499 applications developed are reused and refined in follow-
ing steps and tutorials. A simple example is presented and then
the student must create or refine the presented example.

Research by Lego™ and MIT encourages the use of the
freer explorative constructivist philosophy of education [2] by
letting students explore rather than directed learning. However
the problem solving cognitive philosophy is also popular for
teaching control theory [12]. Teaching of basic concepts to
model the problem need to be more guided. Once the student
has framework to model the problem, they can be given more
freedom and still communicate their work using IEC 61499
standard.

These tutorials are a mixture of cognitive and constructiv-
ism teaching philosophies. The first tutorial is guided problem
solving learning, because specific control theory concepts us-
ing IEC 61499 standard are to be taught. After a basic example
a related task, but slightly harder task is assigned. The second
tutorial is meant to allow the student more freedom to use what
they have learned. The only new concept is composite FBs.
The third tutorial is a mixture and has the goal to teach the con-
cepts of buffering and use of a bus.

Figure 4. shows a typical control loop. A line follower uses
a controller to stay on the line. Calibration and software con-
nection to hardware are also typical tasks in automation.

Figure 4. Feedback control loop

Tasks were chosen to teach control theory concepts as well
as development of control application using the standard and
tool.

In [5] three tutorials are presented for IEC 61499. The first
tutorial modifies an LED application with 4 LEDs. The LEDs
blink, or “chase” up or down. Turning an LED on and then
blinking the LED was used as the first real test case for 3 dif-
ferent devices including LMS this semester. The NXT Lab-
View Configuration VI also uses setting the light sensor’s LED
as part of an example NXT software block [7].

In [5] the second tutorial used simple equation as the first
full application. We tried a similar internal tutorial with
4DIAC/Forte for x2 + y2 with a network-like interface between
FORTE (C++) and FBDK (Java). However there were many
questions from students afterwards, especially about FORTE.
There were fewer questions after developing an application to
blink an LED. The blink application was first simulated with
FBDK in a Java window and then applied to the actual hard-
ware. The toggling the LED FB was reused in later applica-
tions.

We identified a set of key concepts of IEC 61499 and
automation engineering for which it is important the trainee
grasps in the first tutorials:

• How to represent feedback and feed forward con-
trol in IEC 61499

• IEC 61499 devices represent control hardware

• Sensors and actuators are represented by SIFB.
Typically you have one instance of an SIFB per
sensor or actuator.

• Error handling is performed through Boolean FB
interface variables and appropriate events.

• Boolean input qualifier named QI is used for turn-
ing event processing on and off.

V. TUTORIAL APPLICATIONS
The three tutorials developed teach the use of IEC 61499

function blocks to build three working applications. First the
environment (4DIAC, [10]), hardware (LMS, [8]), and stan-
dard with a simple application are taught. A LMS FB library is
provided with FBs to directly interface with the LMS hard-
ware. This includes sensors, motor, and shutdown, plus hard-
ware status (battery power status). A LMSUtil library will be
developed during the tutorials.

Sensor FBs are associated with physical sensors or motors.
Students must be careful to send and receive events to the FBs
associated with exactly one physical resource. The second
tutorial application uses a different kind of sensor hardware.
The third tutorial application teaches timing and using buffers
to send information between applications.

A. Tutorial 1: Line Follower
The first tutorial is a line follower application with on- and

off-the-line calibration. If multiple light sensors are available
the application can be expanded to use 2 or 3 light sensors.

We want to test if it more understandable to start with Basic
FB (BFB) or a Service Interface FB (SIFB). A greater than
BFB will be explained first. Then a two point controller (hys-
teresis) basic FB is assigned. So they go from a “one point”
controller” to a two point controller.

 For teaching how to provide an interface via a FB to the
hardware the student is asked to develop a SIFB for the Lego™
light sensor. This should also help the student understand what
the purpose FORTE C++ Eclipse compilation is for. The sam-
ple FB will be the touch sensor, which reads data the same as
the light sensor. The light sensor ports must be initialized,
which shows the direct connection to the ARM7 processor.
The test application is a light blinking application utilizing the
light sensor’s LED. The Boolean data input QI is initialized to
true. Errors indicated by the output variable QO=false are ig-
nored for the moment.

The light blinking application also introduces the important
and often needed Event FB library, which provides FBs for
manipulating the event flow as well as timed events (i.e., cyclic
triggers or delayed events).

Next, the boundary between on-the-line and off-the-line for
the environment and a light sensor must be found. First the
light sensor must be read and connected into the calibration
calculation. There is no single way to do two-color calibration,
but it’s important how the process knows and handles reading
different colors. The top part of Figure 5 shows calibration
where all samples of one color are read and all samples of the
second color. All samples are averaged together.

Next the boundary between the two colors is used to turn
on an LED if the light sensor is over “black” and off when it is
over “white” as shown by DarkTst FB and Led4 FB in bottom
part of Figure 5. Here it is emphasized that a port should only
be used once.

Without error checking it is possible that a second FB for
the same port/light sensor will be erroneously used. So error
handling and Service Sequence diagrams explained must be
explained. IEC 61499 uses + events to indicate no error and –
events indicate error condition.

The application should now react when a port is allocated
twice, since only one resource can be connected to a port. The
INITO event combined with QO, event qualifier is split via an
event switch into INIT- (QO=false) and INIT+ (QO=true). If
the student previously used the same port/light sensor their
design error will cause their application to no longer work.

Figure 5. Simple Line Follower with light calibration

From personal experience making this failure helps the student
remember each FB represents one real physical resource.

Finally the state of the light sensor can be used to tell the
motors how to move can now replace toggling an LED. This
final application should also be developed stepwise. First in-
stead of just turning the LED on and off, the 2 motors can be
set. The LED toggle is left for debugging. Toggling one motor
off when not over the dark line allows the application to follow
the line in one direction only. This simple line follower is
shown in Figure 5. When a basic version is working, then the
application can be expanded to a general line follower with
feedback control and finding the line. Instead of just one light
sensor to detect if the robot is over the line, multiple light sen-
sors could be used. For example if three light sensors are used,
the middle light sensor is over the line and other two light sen-
sors straddle the line.

Figure 6. Simple Line Follower using composite FBs

B. Further Tutorials
The second tutorial uses the ultrasonic sensor as part of a

simple Cartesian robot to keep a certain distance from the car.
A Lego™ robot must be built to move forward and backwards
based the “car’s” length and up and down based on the feed-
back from the ultrasonic sensor. The student must develop their
own control loop and Lego™ robot. Developing composite
FBs is introduced to combine FBs together. Figure 6 shows
how composite FBs would simplify the simple line follower by
encapsulating the light calibration. The student must be careful
to include error checking when needed in the composite FBs.
Since only the input/ output events and variables are seen care
must be given to not accidently reuse the same port.

The third tutorial uses stations to detect an object, its color,
accept or reject it, and optionally deliver it. A pick-and-place
robot is suggested. The application stations detect information
and pass it on ahead of time via buffers, so the next station is
prepared when the object arrives. This application teaches
buffering data with time deadlines

The IEC 61499 tutorial examples can build on each other if
multiple LMS NXT kits are available. The car is used in car
wash and the Cartesian robot as one station in the assembly
line.

VI. CONCLUSIONS AND FUTURE WORK
Industrial automation is phased with major paradigm

changes. First distributed control systems require a complete
rethinking of how control applications are developed. By pro-
viding cheap and available tutorial systems control engineers
can move up to the new paradigm much faster. With this work
we showed how Lego™ Mindstorms NXT can be such a train-

ing platform for the new standard IEC 61499. We are develop-
ing tutorials which on the one hand utilize the LMS hardware
and on the other side are representatives for typical industrial
automation tasks. The final tutorial versions will appear on the
4DIAC website [10] under the development wiki.

Our next steps are to test the tutorials on different user
groups in order to validate the contents and the structure of the
tutorials. The first tutorial will be tested with students doing a
practice work for the institute this summer. The last two tutori-
als will be tested with students in the fall. We also plan to use
wireless communication between Lego™ Mindstorms NXT to
teach using devices and applications across device boundaries.

REFERENCES
[1] ATMEL, AT91 ISP/SAM-BA® User Guide,

http://www.atmel.com/dyn/resources/prod_documents/6421B.pdf.
[2] Mindell, D., Beland, C., Wesley, C., Clarke, D., Park, R., Trupiano, M.

2000. LEGO mindstorms, the structure of an engineering (r)evolution,
6.933J Structure of Engineering Revolutions,
http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf.

[3] S. Greengard, Making automation Work, Comm.ACM, Dec.2009,
Vol.52,No.12, pp.18-19, http://doi.acm.org/10.1145/1610252.1610261.

[4] R. Lewis, “Modelling Control Systems Using IEC 61499 – Applying
Function Blocks to Distributed Systems”, The Institution of Electrical
Engineers, London, 2001.

[5] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design, O3neida Publ.

[6] IEC TC65/WG6, IEC 61499: Function Blocks, Parts 1 – 4, International
Electrotechnical Commission IEC Std., Rev. 1.0, 2004/2005.

[7] Labview, Creating Lego Mindstorms NXT Software Blocks,
ftp://ftp.ni.com/evaluation/mindstorms/NXT_Creating_MINDSTORMS
_Blocks.pdf

[8] LEGO™ MINDSTORMS NXT Hardware Developer Kit,
http://mindstorms.lego.com/en-us/support/files/default.aspx

[9] LeJos Tutorial, http://lejos.sourceforge.net/nxt/nxj/tutorial/index.htm
[10] 4DIAC – Framework for Distributed Industrial Automation and Control,

www.fordiac.org
[11] IEC TC65/WG6, IEC 61131-3: Programmable controllers – Part 3:

Programming languages. International Electrotechnical Commission,
Geneva, 1993

[12] Paja, C., Scarpetta, J.. and Mejia, E. Platform for Virtual Problem-Based
Learning in Control Engineering Education, p-3432-3437, IEEE
EDUCON 2010, April 2010.

